| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | zlmodzxzldep.a |  |-  A = { <. 0 , 3 >. , <. 1 , 6 >. } | 
						
							| 3 |  | zlmodzxzldep.b |  |-  B = { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 4 |  | zlmodzxzldeplem.f |  |-  F = { <. A , 2 >. , <. B , -u 3 >. } | 
						
							| 5 | 1 2 3 4 | zlmodzxzldeplem1 |  |-  F e. ( ZZ ^m { A , B } ) | 
						
							| 6 |  | elmapi |  |-  ( F e. ( ZZ ^m { A , B } ) -> F : { A , B } --> ZZ ) | 
						
							| 7 |  | prfi |  |-  { A , B } e. Fin | 
						
							| 8 | 7 | a1i |  |-  ( F e. ( ZZ ^m { A , B } ) -> { A , B } e. Fin ) | 
						
							| 9 |  | c0ex |  |-  0 e. _V | 
						
							| 10 | 9 | a1i |  |-  ( F e. ( ZZ ^m { A , B } ) -> 0 e. _V ) | 
						
							| 11 | 6 8 10 | fdmfifsupp |  |-  ( F e. ( ZZ ^m { A , B } ) -> F finSupp 0 ) | 
						
							| 12 | 5 11 | ax-mp |  |-  F finSupp 0 |