Metamath Proof Explorer


Theorem zlmodzxzldeplem2

Description: Lemma 2 for zlmodzxzldep . (Contributed by AV, 24-May-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses zlmodzxzldep.z
|- Z = ( ZZring freeLMod { 0 , 1 } )
zlmodzxzldep.a
|- A = { <. 0 , 3 >. , <. 1 , 6 >. }
zlmodzxzldep.b
|- B = { <. 0 , 2 >. , <. 1 , 4 >. }
zlmodzxzldeplem.f
|- F = { <. A , 2 >. , <. B , -u 3 >. }
Assertion zlmodzxzldeplem2
|- F finSupp 0

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z
 |-  Z = ( ZZring freeLMod { 0 , 1 } )
2 zlmodzxzldep.a
 |-  A = { <. 0 , 3 >. , <. 1 , 6 >. }
3 zlmodzxzldep.b
 |-  B = { <. 0 , 2 >. , <. 1 , 4 >. }
4 zlmodzxzldeplem.f
 |-  F = { <. A , 2 >. , <. B , -u 3 >. }
5 1 2 3 4 zlmodzxzldeplem1
 |-  F e. ( ZZ ^m { A , B } )
6 elmapi
 |-  ( F e. ( ZZ ^m { A , B } ) -> F : { A , B } --> ZZ )
7 prfi
 |-  { A , B } e. Fin
8 7 a1i
 |-  ( F e. ( ZZ ^m { A , B } ) -> { A , B } e. Fin )
9 c0ex
 |-  0 e. _V
10 9 a1i
 |-  ( F e. ( ZZ ^m { A , B } ) -> 0 e. _V )
11 6 8 10 fdmfifsupp
 |-  ( F e. ( ZZ ^m { A , B } ) -> F finSupp 0 )
12 5 11 ax-mp
 |-  F finSupp 0