Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxzldep.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
2 |
|
zlmodzxzldep.a |
|- A = { <. 0 , 3 >. , <. 1 , 6 >. } |
3 |
|
zlmodzxzldep.b |
|- B = { <. 0 , 2 >. , <. 1 , 4 >. } |
4 |
|
zlmodzxzldeplem.f |
|- F = { <. A , 2 >. , <. B , -u 3 >. } |
5 |
1 2 3 4
|
zlmodzxzldeplem1 |
|- F e. ( ZZ ^m { A , B } ) |
6 |
|
elmapi |
|- ( F e. ( ZZ ^m { A , B } ) -> F : { A , B } --> ZZ ) |
7 |
|
prfi |
|- { A , B } e. Fin |
8 |
7
|
a1i |
|- ( F e. ( ZZ ^m { A , B } ) -> { A , B } e. Fin ) |
9 |
|
c0ex |
|- 0 e. _V |
10 |
9
|
a1i |
|- ( F e. ( ZZ ^m { A , B } ) -> 0 e. _V ) |
11 |
6 8 10
|
fdmfifsupp |
|- ( F e. ( ZZ ^m { A , B } ) -> F finSupp 0 ) |
12 |
5 11
|
ax-mp |
|- F finSupp 0 |