Metamath Proof Explorer


Theorem ldepslinc

Description: For (left) vector spaces, isldepslvec2 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Assertion ldepslinc m LVec s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v

Proof

Step Hyp Ref Expression
1 eqid Base m = Base m
2 eqid 0 m = 0 m
3 eqid Scalar m = Scalar m
4 eqid Base Scalar m = Base Scalar m
5 eqid 0 Scalar m = 0 Scalar m
6 1 2 3 4 5 isldepslvec2 m LVec s 𝒫 Base m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v s linDepS m
7 6 bicomd m LVec s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
8 7 rgen2 m LVec s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
9 ldepsnlinc m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v
10 df-ne f linC m s v v ¬ f linC m s v = v
11 10 imbi2i finSupp 0 Scalar m f f linC m s v v finSupp 0 Scalar m f ¬ f linC m s v = v
12 imnan finSupp 0 Scalar m f ¬ f linC m s v = v ¬ finSupp 0 Scalar m f f linC m s v = v
13 11 12 bitri finSupp 0 Scalar m f f linC m s v v ¬ finSupp 0 Scalar m f f linC m s v = v
14 13 ralbii f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v f Base Scalar m s v ¬ finSupp 0 Scalar m f f linC m s v = v
15 ralnex f Base Scalar m s v ¬ finSupp 0 Scalar m f f linC m s v = v ¬ f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
16 14 15 bitri f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v ¬ f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
17 16 ralbii v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v v s ¬ f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
18 ralnex v s ¬ f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
19 17 18 bitri v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
20 19 anbi2i s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
21 20 2rexbii m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
22 9 21 mpbi m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
23 22 orci m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v m LMod s 𝒫 Base m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m
24 r19.43 m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v s 𝒫 Base m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v m LMod s 𝒫 Base m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m
25 23 24 mpbir m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v s 𝒫 Base m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m
26 r19.43 s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v s 𝒫 Base m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m
27 26 rexbii m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v s 𝒫 Base m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m
28 25 27 mpbir m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m
29 xor ¬ s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m
30 29 bicomi s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m ¬ s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
31 30 rexbii s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m s 𝒫 Base m ¬ s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
32 rexnal s 𝒫 Base m ¬ s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
33 31 32 bitri s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m ¬ s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
34 33 rexbii m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m m LMod ¬ s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
35 rexnal m LMod ¬ s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
36 34 35 bitri m LMod s 𝒫 Base m s linDepS m ¬ v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ s linDepS m ¬ m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
37 28 36 mpbi ¬ m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v
38 8 37 pm3.2i m LVec s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v ¬ m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v = v