Metamath Proof Explorer


Theorem lvolnelln

Description: No lattice volume is a lattice line. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses lvolnelln.l N=LLinesK
lvolnelln.v V=LVolsK
Assertion lvolnelln KHLXV¬XN

Proof

Step Hyp Ref Expression
1 lvolnelln.l N=LLinesK
2 lvolnelln.v V=LVolsK
3 hllat KHLKLat
4 eqid BaseK=BaseK
5 4 2 lvolbase XVXBaseK
6 eqid K=K
7 4 6 latref KLatXBaseKXKX
8 3 5 7 syl2an KHLXVXKX
9 6 1 2 lvolnlelln KHLXVXN¬XKX
10 9 3expia KHLXVXN¬XKX
11 8 10 mt2d KHLXV¬XN