Metamath Proof Explorer


Theorem m1bits

Description: The bits of negative one. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion m1bits bits1=0

Proof

Step Hyp Ref Expression
1 0z 0
2 bitscmp 00bits0=bits-0-1
3 1 2 ax-mp 0bits0=bits-0-1
4 0bits bits0=
5 4 difeq2i 0bits0=0
6 dif0 0=0
7 5 6 eqtri 0bits0=0
8 neg0 0=0
9 8 oveq1i -0-1=01
10 df-neg 1=01
11 9 10 eqtr4i -0-1=1
12 11 fveq2i bits-0-1=bits1
13 3 7 12 3eqtr3ri bits1=0