Metamath Proof Explorer


Theorem m1modnep2mod

Description: A nonnegative integer minus 1 is not itself plus 2 modulo an integer greater than 3 and the nonnegative integer. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion m1modnep2mod N 4 A A 1 mod N A + 2 mod N

Proof

Step Hyp Ref Expression
1 eluz4nn N 4 N
2 1 adantr N 4 A N
3 simpr N 4 A A
4 2z 2
5 4 a1i N 4 A 2
6 1zzd N 4 A 1
7 1le3 1 3
8 2p1e3 2 + 1 = 3
9 7 8 breqtrri 1 2 + 1
10 9 a1i N 4 A 1 2 + 1
11 eluz2 N 4 4 N 4 N
12 df-4 4 = 3 + 1
13 12 breq1i 4 N 3 + 1 N
14 3z 3
15 14 a1i 4 3
16 zltp1le 3 N 3 < N 3 + 1 N
17 15 16 sylan 4 N 3 < N 3 + 1 N
18 17 biimprd 4 N 3 + 1 N 3 < N
19 13 18 biimtrid 4 N 4 N 3 < N
20 19 3impia 4 N 4 N 3 < N
21 11 20 sylbi N 4 3 < N
22 8 21 eqbrtrid N 4 2 + 1 < N
23 22 adantr N 4 A 2 + 1 < N
24 submodneaddmod N A 2 1 1 2 + 1 2 + 1 < N A + 2 mod N A 1 mod N
25 2 3 5 6 10 23 24 syl132anc N 4 A A + 2 mod N A 1 mod N
26 25 necomd N 4 A A 1 mod N A + 2 mod N