Step |
Hyp |
Ref |
Expression |
1 |
|
eluz4nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → 𝑁 ∈ ℕ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐴 ∈ ℤ ) → 𝑁 ∈ ℕ ) |
3 |
|
simpr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
4 |
|
2z |
⊢ 2 ∈ ℤ |
5 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐴 ∈ ℤ ) → 2 ∈ ℤ ) |
6 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐴 ∈ ℤ ) → 1 ∈ ℤ ) |
7 |
|
1le3 |
⊢ 1 ≤ 3 |
8 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
9 |
7 8
|
breqtrri |
⊢ 1 ≤ ( 2 + 1 ) |
10 |
9
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐴 ∈ ℤ ) → 1 ≤ ( 2 + 1 ) ) |
11 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ↔ ( 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 4 ≤ 𝑁 ) ) |
12 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
13 |
12
|
breq1i |
⊢ ( 4 ≤ 𝑁 ↔ ( 3 + 1 ) ≤ 𝑁 ) |
14 |
|
3z |
⊢ 3 ∈ ℤ |
15 |
14
|
a1i |
⊢ ( 4 ∈ ℤ → 3 ∈ ℤ ) |
16 |
|
zltp1le |
⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 3 < 𝑁 ↔ ( 3 + 1 ) ≤ 𝑁 ) ) |
17 |
15 16
|
sylan |
⊢ ( ( 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 3 < 𝑁 ↔ ( 3 + 1 ) ≤ 𝑁 ) ) |
18 |
17
|
biimprd |
⊢ ( ( 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 3 + 1 ) ≤ 𝑁 → 3 < 𝑁 ) ) |
19 |
13 18
|
biimtrid |
⊢ ( ( 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 4 ≤ 𝑁 → 3 < 𝑁 ) ) |
20 |
19
|
3impia |
⊢ ( ( 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 4 ≤ 𝑁 ) → 3 < 𝑁 ) |
21 |
11 20
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → 3 < 𝑁 ) |
22 |
8 21
|
eqbrtrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( 2 + 1 ) < 𝑁 ) |
23 |
22
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐴 ∈ ℤ ) → ( 2 + 1 ) < 𝑁 ) |
24 |
|
submodneaddmod |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 1 ≤ ( 2 + 1 ) ∧ ( 2 + 1 ) < 𝑁 ) ) → ( ( 𝐴 + 2 ) mod 𝑁 ) ≠ ( ( 𝐴 − 1 ) mod 𝑁 ) ) |
25 |
2 3 5 6 10 23 24
|
syl132anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 + 2 ) mod 𝑁 ) ≠ ( ( 𝐴 − 1 ) mod 𝑁 ) ) |
26 |
25
|
necomd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 − 1 ) mod 𝑁 ) ≠ ( ( 𝐴 + 2 ) mod 𝑁 ) ) |