Metamath Proof Explorer
		
		
		
		Description:  The fifth Mersenne number M_5 = 31 is a prime number.  (Contributed by AV, 17-Aug-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | m5prm |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3nn0 |  | 
						
							| 2 |  | 2nn0 |  | 
						
							| 3 |  | 1nn0 |  | 
						
							| 4 |  | 2exp5 |  | 
						
							| 5 |  | 3p1e4 |  | 
						
							| 6 |  | 2m1e1 |  | 
						
							| 7 | 1 2 3 4 5 6 | decsubi |  | 
						
							| 8 |  | 31prm |  | 
						
							| 9 | 7 8 | eqeltri |  |