Metamath Proof Explorer
Description: The fifth Mersenne number M_5 = 31 is a prime number. (Contributed by AV, 17-Aug-2021)
|
|
Ref |
Expression |
|
Assertion |
m5prm |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3nn0 |
|
| 2 |
|
2nn0 |
|
| 3 |
|
1nn0 |
|
| 4 |
|
2exp5 |
|
| 5 |
|
3p1e4 |
|
| 6 |
|
2m1e1 |
|
| 7 |
1 2 3 4 5 6
|
decsubi |
|
| 8 |
|
31prm |
|
| 9 |
7 8
|
eqeltri |
|