Metamath Proof Explorer


Theorem map0b

Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion map0b AA=

Proof

Step Hyp Ref Expression
1 elmapi fAf:A
2 fdm f:Adomf=A
3 frn f:Aranf
4 ss0 ranfranf=
5 3 4 syl f:Aranf=
6 dm0rn0 domf=ranf=
7 5 6 sylibr f:Adomf=
8 2 7 eqtr3d f:AA=
9 1 8 syl fAA=
10 9 necon3ai A¬fA
11 10 eq0rdv AA=