Metamath Proof Explorer


Theorem mapdordlem1

Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypothesis mapdordlem1.t T=gF|OOLgY
Assertion mapdordlem1 JTJFOOLJY

Proof

Step Hyp Ref Expression
1 mapdordlem1.t T=gF|OOLgY
2 2fveq3 g=JOLg=OLJ
3 2 fveq2d g=JOOLg=OOLJ
4 3 eleq1d g=JOOLgYOOLJY
5 4 1 elrab2 JTJFOOLJY