Metamath Proof Explorer


Theorem mapprop

Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019) (Proof shortened by AV, 2-Jun-2024)

Ref Expression
Hypothesis mapprop.f F=XAYB
Assertion mapprop XVARYVBRXYRWFRXY

Proof

Step Hyp Ref Expression
1 mapprop.f F=XAYB
2 simp3r XVARYVBRXYRWRW
3 simpl XVARXV
4 simpl YVBRYV
5 simpl XYRWXY
6 3 4 5 3anim123i XVARYVBRXYRWXVYVXY
7 simpr XVARAR
8 simpr YVBRBR
9 7 8 anim12i XVARYVBRARBR
10 9 3adant3 XVARYVBRXYRWARBR
11 fprmappr RWXVYVXYARBRXAYBRXY
12 2 6 10 11 syl3anc XVARYVBRXYRWXAYBRXY
13 1 12 eqeltrid XVARYVBRXYRWFRXY