Metamath Proof Explorer


Theorem mapsnf1o3

Description: Explicit bijection in the reverse of mapsnf1o2 . (Contributed by Stefan O'Rear, 24-Mar-2015)

Ref Expression
Hypotheses mapsncnv.s S=X
mapsncnv.b BV
mapsncnv.x XV
mapsnf1o3.f F=yBS×y
Assertion mapsnf1o3 F:B1-1 ontoBS

Proof

Step Hyp Ref Expression
1 mapsncnv.s S=X
2 mapsncnv.b BV
3 mapsncnv.x XV
4 mapsnf1o3.f F=yBS×y
5 eqid xBSxX=xBSxX
6 1 2 3 5 mapsnf1o2 xBSxX:BS1-1 ontoB
7 f1ocnv xBSxX:BS1-1 ontoBxBSxX-1:B1-1 ontoBS
8 6 7 ax-mp xBSxX-1:B1-1 ontoBS
9 1 2 3 5 mapsncnv xBSxX-1=yBS×y
10 4 9 eqtr4i F=xBSxX-1
11 f1oeq1 F=xBSxX-1F:B1-1 ontoBSxBSxX-1:B1-1 ontoBS
12 10 11 ax-mp F:B1-1 ontoBSxBSxX-1:B1-1 ontoBS
13 8 12 mpbir F:B1-1 ontoBS