Metamath Proof Explorer


Theorem mat0dimbas0

Description: The empty set is the one and only matrix of dimension 0, called "the empty matrix". (Contributed by AV, 27-Feb-2019)

Ref Expression
Assertion mat0dimbas0 RVBaseMatR=

Proof

Step Hyp Ref Expression
1 0xp ×=
2 1 a1i RV×=
3 2 oveq2d RVBaseR×=BaseR
4 fvex BaseRV
5 map0e BaseRVBaseR=1𝑜
6 4 5 mp1i RVBaseR=1𝑜
7 3 6 eqtrd RVBaseR×=1𝑜
8 0fin Fin
9 eqid MatR=MatR
10 eqid BaseR=BaseR
11 9 10 matbas2 FinRVBaseR×=BaseMatR
12 8 11 mpan RVBaseR×=BaseMatR
13 df1o2 1𝑜=
14 13 a1i RV1𝑜=
15 7 12 14 3eqtr3d RVBaseMatR=