Metamath Proof Explorer


Theorem mat1bas

Description: The identity matrix is a matrix. (Contributed by AV, 15-Feb-2019)

Ref Expression
Hypotheses mat1bas.a A=NMatR
mat1bas.b B=BaseA
mat1bas.i 1˙=1NMatR
Assertion mat1bas RRingNFin1˙B

Proof

Step Hyp Ref Expression
1 mat1bas.a A=NMatR
2 mat1bas.b B=BaseA
3 mat1bas.i 1˙=1NMatR
4 eqid NMatR=NMatR
5 4 matring NFinRRingNMatRRing
6 5 ancoms RRingNFinNMatRRing
7 1 fveq2i BaseA=BaseNMatR
8 2 7 eqtri B=BaseNMatR
9 8 3 ringidcl NMatRRing1˙B
10 6 9 syl RRingNFin1˙B