| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matsc.a |  | 
						
							| 2 |  | matsc.k |  | 
						
							| 3 |  | matsc.m |  | 
						
							| 4 |  | matsc.z |  | 
						
							| 5 |  | simp3 |  | 
						
							| 6 |  | 3simpa |  | 
						
							| 7 | 1 | matring |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 8 9 | ringidcl |  | 
						
							| 11 | 6 7 10 | 3syl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 1 8 2 3 12 13 | matvsca2 |  | 
						
							| 15 | 5 11 14 | syl2anc |  | 
						
							| 16 |  | simp1 |  | 
						
							| 17 |  | simp13 |  | 
						
							| 18 |  | fvex |  | 
						
							| 19 | 4 | fvexi |  | 
						
							| 20 | 18 19 | ifex |  | 
						
							| 21 | 20 | a1i |  | 
						
							| 22 |  | fconstmpo |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 1 24 4 | mat1 |  | 
						
							| 26 | 25 | 3adant3 |  | 
						
							| 27 | 16 16 17 21 23 26 | offval22 |  | 
						
							| 28 |  | ovif2 |  | 
						
							| 29 | 2 12 24 | ringridm |  | 
						
							| 30 | 29 | 3adant1 |  | 
						
							| 31 | 2 12 4 | ringrz |  | 
						
							| 32 | 31 | 3adant1 |  | 
						
							| 33 | 30 32 | ifeq12d |  | 
						
							| 34 | 28 33 | eqtrid |  | 
						
							| 35 | 34 | mpoeq3dv |  | 
						
							| 36 | 15 27 35 | 3eqtrd |  |