Metamath Proof Explorer


Theorem ofco2

Description: Distribution law for the function operation and the composition of functions. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Assertion ofco2 FVGVFunHFHVGHVFRfGH=FHRfGH

Proof

Step Hyp Ref Expression
1 simpr1 FVGVFunHFHVGHVFunH
2 fvimacnvi FunHxH-1domFdomGHxdomFdomG
3 1 2 sylan FVGVFunHFHVGHVxH-1domFdomGHxdomFdomG
4 1 funfnd FVGVFunHFHVGHVHFndomH
5 dffn5 HFndomHH=xdomHHx
6 4 5 sylib FVGVFunHFHVGHVH=xdomHHx
7 6 reseq1d FVGVFunHFHVGHVHH-1domFdomG=xdomHHxH-1domFdomG
8 cnvimass H-1domFdomGdomH
9 resmpt H-1domFdomGdomHxdomHHxH-1domFdomG=xH-1domFdomGHx
10 8 9 ax-mp xdomHHxH-1domFdomG=xH-1domFdomGHx
11 7 10 eqtrdi FVGVFunHFHVGHVHH-1domFdomG=xH-1domFdomGHx
12 offval3 FVGVFRfG=ydomFdomGFyRGy
13 12 adantr FVGVFunHFHVGHVFRfG=ydomFdomGFyRGy
14 fveq2 y=HxFy=FHx
15 fveq2 y=HxGy=GHx
16 14 15 oveq12d y=HxFyRGy=FHxRGHx
17 3 11 13 16 fmptco FVGVFunHFHVGHVFRfGHH-1domFdomG=xH-1domFdomGFHxRGHx
18 ovex FxRGxV
19 18 rgenw xdomFdomGFxRGxV
20 eqid xdomFdomGFxRGx=xdomFdomGFxRGx
21 20 fnmpt xdomFdomGFxRGxVxdomFdomGFxRGxFndomFdomG
22 19 21 mp1i FVGVFunHFHVGHVxdomFdomGFxRGxFndomFdomG
23 offval3 FVGVFRfG=xdomFdomGFxRGx
24 23 adantr FVGVFunHFHVGHVFRfG=xdomFdomGFxRGx
25 24 fneq1d FVGVFunHFHVGHVFRfGFndomFdomGxdomFdomGFxRGxFndomFdomG
26 22 25 mpbird FVGVFunHFHVGHVFRfGFndomFdomG
27 26 fndmd FVGVFunHFHVGHVdomFRfG=domFdomG
28 eqimss domFRfG=domFdomGdomFRfGdomFdomG
29 cores2 domFRfGdomFdomGFRfGH-1domFdomG-1=FRfGH
30 27 28 29 3syl FVGVFunHFHVGHVFRfGH-1domFdomG-1=FRfGH
31 funcnvres2 FunHH-1domFdomG-1=HH-1domFdomG
32 1 31 syl FVGVFunHFHVGHVH-1domFdomG-1=HH-1domFdomG
33 32 coeq2d FVGVFunHFHVGHVFRfGH-1domFdomG-1=FRfGHH-1domFdomG
34 30 33 eqtr3d FVGVFunHFHVGHVFRfGH=FRfGHH-1domFdomG
35 simpr2 FVGVFunHFHVGHVFHV
36 simpr3 FVGVFunHFHVGHVGHV
37 offval3 FHVGHVFHRfGH=xdomFHdomGHFHxRGHx
38 35 36 37 syl2anc FVGVFunHFHVGHVFHRfGH=xdomFHdomGHFHxRGHx
39 dmco domFH=H-1domF
40 dmco domGH=H-1domG
41 39 40 ineq12i domFHdomGH=H-1domFH-1domG
42 inpreima FunHH-1domFdomG=H-1domFH-1domG
43 1 42 syl FVGVFunHFHVGHVH-1domFdomG=H-1domFH-1domG
44 41 43 eqtr4id FVGVFunHFHVGHVdomFHdomGH=H-1domFdomG
45 simplr1 FVGVFunHFHVGHVxdomFHdomGHFunH
46 inss2 domFHdomGHdomGH
47 dmcoss domGHdomH
48 46 47 sstri domFHdomGHdomH
49 48 a1i FVGVFunHFHVGHVdomFHdomGHdomH
50 49 sselda FVGVFunHFHVGHVxdomFHdomGHxdomH
51 fvco FunHxdomHFHx=FHx
52 45 50 51 syl2anc FVGVFunHFHVGHVxdomFHdomGHFHx=FHx
53 inss1 domFHdomGHdomFH
54 dmcoss domFHdomH
55 53 54 sstri domFHdomGHdomH
56 55 a1i FVGVFunHFHVGHVdomFHdomGHdomH
57 56 sselda FVGVFunHFHVGHVxdomFHdomGHxdomH
58 fvco FunHxdomHGHx=GHx
59 45 57 58 syl2anc FVGVFunHFHVGHVxdomFHdomGHGHx=GHx
60 52 59 oveq12d FVGVFunHFHVGHVxdomFHdomGHFHxRGHx=FHxRGHx
61 44 60 mpteq12dva FVGVFunHFHVGHVxdomFHdomGHFHxRGHx=xH-1domFdomGFHxRGHx
62 38 61 eqtrd FVGVFunHFHVGHVFHRfGH=xH-1domFdomGFHxRGHx
63 17 34 62 3eqtr4d FVGVFunHFHVGHVFRfGH=FHRfGH