Metamath Proof Explorer


Theorem matinvg

Description: The matrix ring has the same additive inverse as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypotheses matbas.a A=NMatR
matbas.g G=RfreeLModN×N
Assertion matinvg NFinRVinvgG=invgA

Proof

Step Hyp Ref Expression
1 matbas.a A=NMatR
2 matbas.g G=RfreeLModN×N
3 eqidd NFinRVBaseG=BaseG
4 1 2 matbas NFinRVBaseG=BaseA
5 1 2 matplusg NFinRV+G=+A
6 5 oveqdr NFinRVxBaseGyBaseGx+Gy=x+Ay
7 3 4 6 grpinvpropd NFinRVinvgG=invgA