Metamath Proof Explorer


Theorem matlmod

Description: The matrix ring is a linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypothesis matlmod.a A=NMatR
Assertion matlmod NFinRRingALMod

Proof

Step Hyp Ref Expression
1 matlmod.a A=NMatR
2 sqxpexg NFinN×NV
3 eqid RfreeLModN×N=RfreeLModN×N
4 3 frlmlmod RRingN×NVRfreeLModN×NLMod
5 4 ancoms N×NVRRingRfreeLModN×NLMod
6 2 5 sylan NFinRRingRfreeLModN×NLMod
7 eqidd NFinRRingBaseRfreeLModN×N=BaseRfreeLModN×N
8 1 3 matbas NFinRRingBaseRfreeLModN×N=BaseA
9 1 3 matplusg NFinRRing+RfreeLModN×N=+A
10 9 oveqdr NFinRRingxBaseRfreeLModN×NyBaseRfreeLModN×Nx+RfreeLModN×Ny=x+Ay
11 eqidd NFinRRingScalarRfreeLModN×N=ScalarRfreeLModN×N
12 1 3 matsca NFinRRingScalarRfreeLModN×N=ScalarA
13 eqid BaseScalarRfreeLModN×N=BaseScalarRfreeLModN×N
14 1 3 matvsca NFinRRingRfreeLModN×N=A
15 14 oveqdr NFinRRingxBaseScalarRfreeLModN×NyBaseRfreeLModN×NxRfreeLModN×Ny=xAy
16 7 8 10 11 12 13 15 lmodpropd NFinRRingRfreeLModN×NLModALMod
17 6 16 mpbid NFinRRingALMod