Metamath Proof Explorer


Theorem mdsymi

Description: M-symmetry of the Hilbert lattice. Lemma 5 of Maeda p. 168. (Contributed by NM, 3-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsym.1 A C
mdsym.2 B C
Assertion mdsymi A 𝑀 B B 𝑀 A

Proof

Step Hyp Ref Expression
1 mdsym.1 A C
2 mdsym.2 B C
3 2 choccli B C
4 1 choccli A C
5 eqid B x = B x
6 3 4 5 mdsymlem8 B 0 A 0 A 𝑀 * B B 𝑀 * A
7 mddmd A C B C A 𝑀 B A 𝑀 * B
8 1 2 7 mp2an A 𝑀 B A 𝑀 * B
9 mddmd B C A C B 𝑀 A B 𝑀 * A
10 2 1 9 mp2an B 𝑀 A B 𝑀 * A
11 6 8 10 3bitr4g B 0 A 0 A 𝑀 B B 𝑀 A
12 1 chssii A
13 fveq2 B = 0 B = 0
14 2 pjococi B = B
15 choc0 0 =
16 13 14 15 3eqtr3g B = 0 B =
17 12 16 sseqtrrid B = 0 A B
18 ssmd1 A C B C A B A 𝑀 B
19 1 2 18 mp3an12 A B A 𝑀 B
20 ssmd2 A C B C A B B 𝑀 A
21 1 2 20 mp3an12 A B B 𝑀 A
22 19 21 jca A B A 𝑀 B B 𝑀 A
23 pm5.1 A 𝑀 B B 𝑀 A A 𝑀 B B 𝑀 A
24 17 22 23 3syl B = 0 A 𝑀 B B 𝑀 A
25 2 chssii B
26 fveq2 A = 0 A = 0
27 1 pjococi A = A
28 26 27 15 3eqtr3g A = 0 A =
29 25 28 sseqtrrid A = 0 B A
30 ssmd2 B C A C B A A 𝑀 B
31 2 1 30 mp3an12 B A A 𝑀 B
32 ssmd1 B C A C B A B 𝑀 A
33 2 1 32 mp3an12 B A B 𝑀 A
34 31 33 jca B A A 𝑀 B B 𝑀 A
35 29 34 23 3syl A = 0 A 𝑀 B B 𝑀 A
36 11 24 35 pm2.61iine A 𝑀 B B 𝑀 A