Step |
Hyp |
Ref |
Expression |
1 |
|
mdsym.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
mdsym.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
4 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
5 |
|
eqid |
⊢ ( ( ⊥ ‘ 𝐵 ) ∨ℋ 𝑥 ) = ( ( ⊥ ‘ 𝐵 ) ∨ℋ 𝑥 ) |
6 |
3 4 5
|
mdsymlem8 |
⊢ ( ( ( ⊥ ‘ 𝐵 ) ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) → ( ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝑀ℋ* ( ⊥ ‘ 𝐴 ) ) ) |
7 |
|
mddmd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) ) |
8 |
1 2 7
|
mp2an |
⊢ ( 𝐴 𝑀ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) |
9 |
|
mddmd |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 𝑀ℋ 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀ℋ* ( ⊥ ‘ 𝐴 ) ) ) |
10 |
2 1 9
|
mp2an |
⊢ ( 𝐵 𝑀ℋ 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀ℋ* ( ⊥ ‘ 𝐴 ) ) |
11 |
6 8 10
|
3bitr4g |
⊢ ( ( ( ⊥ ‘ 𝐵 ) ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) → ( 𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴 ) ) |
12 |
1
|
chssii |
⊢ 𝐴 ⊆ ℋ |
13 |
|
fveq2 |
⊢ ( ( ⊥ ‘ 𝐵 ) = 0ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = ( ⊥ ‘ 0ℋ ) ) |
14 |
2
|
pjococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 |
15 |
|
choc0 |
⊢ ( ⊥ ‘ 0ℋ ) = ℋ |
16 |
13 14 15
|
3eqtr3g |
⊢ ( ( ⊥ ‘ 𝐵 ) = 0ℋ → 𝐵 = ℋ ) |
17 |
12 16
|
sseqtrrid |
⊢ ( ( ⊥ ‘ 𝐵 ) = 0ℋ → 𝐴 ⊆ 𝐵 ) |
18 |
|
ssmd1 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 𝑀ℋ 𝐵 ) |
19 |
1 2 18
|
mp3an12 |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ 𝐵 ) |
20 |
|
ssmd2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 𝑀ℋ 𝐴 ) |
21 |
1 2 20
|
mp3an12 |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐵 𝑀ℋ 𝐴 ) |
22 |
19 21
|
jca |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ 𝐴 ) ) |
23 |
|
pm5.1 |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ 𝐴 ) → ( 𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴 ) ) |
24 |
17 22 23
|
3syl |
⊢ ( ( ⊥ ‘ 𝐵 ) = 0ℋ → ( 𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴 ) ) |
25 |
2
|
chssii |
⊢ 𝐵 ⊆ ℋ |
26 |
|
fveq2 |
⊢ ( ( ⊥ ‘ 𝐴 ) = 0ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ 0ℋ ) ) |
27 |
1
|
pjococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
28 |
26 27 15
|
3eqtr3g |
⊢ ( ( ⊥ ‘ 𝐴 ) = 0ℋ → 𝐴 = ℋ ) |
29 |
25 28
|
sseqtrrid |
⊢ ( ( ⊥ ‘ 𝐴 ) = 0ℋ → 𝐵 ⊆ 𝐴 ) |
30 |
|
ssmd2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 𝑀ℋ 𝐵 ) |
31 |
2 1 30
|
mp3an12 |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐴 𝑀ℋ 𝐵 ) |
32 |
|
ssmd1 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 𝑀ℋ 𝐴 ) |
33 |
2 1 32
|
mp3an12 |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 𝑀ℋ 𝐴 ) |
34 |
31 33
|
jca |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ 𝐴 ) ) |
35 |
29 34 23
|
3syl |
⊢ ( ( ⊥ ‘ 𝐴 ) = 0ℋ → ( 𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴 ) ) |
36 |
11 24 35
|
pm2.61iine |
⊢ ( 𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴 ) |