Metamath Proof Explorer


Theorem mdsymi

Description: M-symmetry of the Hilbert lattice. Lemma 5 of Maeda p. 168. (Contributed by NM, 3-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsym.1 𝐴C
mdsym.2 𝐵C
Assertion mdsymi ( 𝐴 𝑀 𝐵𝐵 𝑀 𝐴 )

Proof

Step Hyp Ref Expression
1 mdsym.1 𝐴C
2 mdsym.2 𝐵C
3 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
4 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
5 eqid ( ( ⊥ ‘ 𝐵 ) ∨ 𝑥 ) = ( ( ⊥ ‘ 𝐵 ) ∨ 𝑥 )
6 3 4 5 mdsymlem8 ( ( ( ⊥ ‘ 𝐵 ) ≠ 0 ∧ ( ⊥ ‘ 𝐴 ) ≠ 0 ) → ( ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝑀* ( ⊥ ‘ 𝐴 ) ) )
7 mddmd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ) )
8 1 2 7 mp2an ( 𝐴 𝑀 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) )
9 mddmd ( ( 𝐵C𝐴C ) → ( 𝐵 𝑀 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀* ( ⊥ ‘ 𝐴 ) ) )
10 2 1 9 mp2an ( 𝐵 𝑀 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀* ( ⊥ ‘ 𝐴 ) )
11 6 8 10 3bitr4g ( ( ( ⊥ ‘ 𝐵 ) ≠ 0 ∧ ( ⊥ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 𝑀 𝐵𝐵 𝑀 𝐴 ) )
12 1 chssii 𝐴 ⊆ ℋ
13 fveq2 ( ( ⊥ ‘ 𝐵 ) = 0 → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = ( ⊥ ‘ 0 ) )
14 2 pjococi ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵
15 choc0 ( ⊥ ‘ 0 ) = ℋ
16 13 14 15 3eqtr3g ( ( ⊥ ‘ 𝐵 ) = 0𝐵 = ℋ )
17 12 16 sseqtrrid ( ( ⊥ ‘ 𝐵 ) = 0𝐴𝐵 )
18 ssmd1 ( ( 𝐴C𝐵C𝐴𝐵 ) → 𝐴 𝑀 𝐵 )
19 1 2 18 mp3an12 ( 𝐴𝐵𝐴 𝑀 𝐵 )
20 ssmd2 ( ( 𝐴C𝐵C𝐴𝐵 ) → 𝐵 𝑀 𝐴 )
21 1 2 20 mp3an12 ( 𝐴𝐵𝐵 𝑀 𝐴 )
22 19 21 jca ( 𝐴𝐵 → ( 𝐴 𝑀 𝐵𝐵 𝑀 𝐴 ) )
23 pm5.1 ( ( 𝐴 𝑀 𝐵𝐵 𝑀 𝐴 ) → ( 𝐴 𝑀 𝐵𝐵 𝑀 𝐴 ) )
24 17 22 23 3syl ( ( ⊥ ‘ 𝐵 ) = 0 → ( 𝐴 𝑀 𝐵𝐵 𝑀 𝐴 ) )
25 2 chssii 𝐵 ⊆ ℋ
26 fveq2 ( ( ⊥ ‘ 𝐴 ) = 0 → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ 0 ) )
27 1 pjococi ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴
28 26 27 15 3eqtr3g ( ( ⊥ ‘ 𝐴 ) = 0𝐴 = ℋ )
29 25 28 sseqtrrid ( ( ⊥ ‘ 𝐴 ) = 0𝐵𝐴 )
30 ssmd2 ( ( 𝐵C𝐴C𝐵𝐴 ) → 𝐴 𝑀 𝐵 )
31 2 1 30 mp3an12 ( 𝐵𝐴𝐴 𝑀 𝐵 )
32 ssmd1 ( ( 𝐵C𝐴C𝐵𝐴 ) → 𝐵 𝑀 𝐴 )
33 2 1 32 mp3an12 ( 𝐵𝐴𝐵 𝑀 𝐴 )
34 31 33 jca ( 𝐵𝐴 → ( 𝐴 𝑀 𝐵𝐵 𝑀 𝐴 ) )
35 29 34 23 3syl ( ( ⊥ ‘ 𝐴 ) = 0 → ( 𝐴 𝑀 𝐵𝐵 𝑀 𝐴 ) )
36 11 24 35 pm2.61iine ( 𝐴 𝑀 𝐵𝐵 𝑀 𝐴 )