Metamath Proof Explorer


Theorem meacl

Description: The measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meacl.1 φMMeas
meacl.2 S=domM
meacl.3 φAS
Assertion meacl φMA0+∞

Proof

Step Hyp Ref Expression
1 meacl.1 φMMeas
2 meacl.2 S=domM
3 meacl.3 φAS
4 1 2 meaf φM:S0+∞
5 4 3 ffvelcdmd φMA0+∞