Metamath Proof Explorer


Theorem meage0

Description: If the measure of a measurable set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meage0.m φMMeas
meage0.a φAdomM
Assertion meage0 φ0MA

Proof

Step Hyp Ref Expression
1 meage0.m φMMeas
2 meage0.a φAdomM
3 0xr 0*
4 3 a1i φ0*
5 pnfxr +∞*
6 5 a1i φ+∞*
7 eqid domM=domM
8 1 7 2 meacl φMA0+∞
9 iccgelb 0*+∞*MA0+∞0MA
10 4 6 8 9 syl3anc φ0MA