Metamath Proof Explorer


Theorem met2ndc

Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Hypothesis methaus.1 J=MetOpenD
Assertion met2ndc D∞MetXJ2nd𝜔x𝒫XxωclsJx=X

Proof

Step Hyp Ref Expression
1 methaus.1 J=MetOpenD
2 eqid J=J
3 2 2ndcsep J2nd𝜔x𝒫JxωclsJx=J
4 1 mopnuni D∞MetXX=J
5 4 pweqd D∞MetX𝒫X=𝒫J
6 4 eqeq2d D∞MetXclsJx=XclsJx=J
7 6 anbi2d D∞MetXxωclsJx=XxωclsJx=J
8 5 7 rexeqbidv D∞MetXx𝒫XxωclsJx=Xx𝒫JxωclsJx=J
9 3 8 imbitrrid D∞MetXJ2nd𝜔x𝒫XxωclsJx=X
10 elpwi x𝒫XxX
11 1 met2ndci D∞MetXxXxωclsJx=XJ2nd𝜔
12 11 3exp2 D∞MetXxXxωclsJx=XJ2nd𝜔
13 12 imp4a D∞MetXxXxωclsJx=XJ2nd𝜔
14 10 13 syl5 D∞MetXx𝒫XxωclsJx=XJ2nd𝜔
15 14 rexlimdv D∞MetXx𝒫XxωclsJx=XJ2nd𝜔
16 9 15 impbid D∞MetXJ2nd𝜔x𝒫XxωclsJx=X