Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | methaus.1 | |
|
Assertion | met2ndc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | methaus.1 | |
|
2 | eqid | |
|
3 | 2 | 2ndcsep | |
4 | 1 | mopnuni | |
5 | 4 | pweqd | |
6 | 4 | eqeq2d | |
7 | 6 | anbi2d | |
8 | 5 7 | rexeqbidv | |
9 | 3 8 | imbitrrid | |
10 | elpwi | |
|
11 | 1 | met2ndci | |
12 | 11 | 3exp2 | |
13 | 12 | imp4a | |
14 | 10 13 | syl5 | |
15 | 14 | rexlimdv | |
16 | 9 15 | impbid | |