Metamath Proof Explorer


Theorem metequiv

Description: Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypotheses metequiv.3 J=MetOpenC
metequiv.4 K=MetOpenD
Assertion metequiv C∞MetXD∞MetXJ=KxXr+s+xballDsxballCra+b+xballCbxballDa

Proof

Step Hyp Ref Expression
1 metequiv.3 J=MetOpenC
2 metequiv.4 K=MetOpenD
3 1 2 metss C∞MetXD∞MetXJKxXr+s+xballDsxballCr
4 2 1 metss D∞MetXC∞MetXKJxXa+b+xballCbxballDa
5 4 ancoms C∞MetXD∞MetXKJxXa+b+xballCbxballDa
6 3 5 anbi12d C∞MetXD∞MetXJKKJxXr+s+xballDsxballCrxXa+b+xballCbxballDa
7 eqss J=KJKKJ
8 r19.26 xXr+s+xballDsxballCra+b+xballCbxballDaxXr+s+xballDsxballCrxXa+b+xballCbxballDa
9 6 7 8 3bitr4g C∞MetXD∞MetXJ=KxXr+s+xballDsxballCra+b+xballCbxballDa