Metamath Proof Explorer


Theorem metequiv

Description: Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypotheses metequiv.3 J = MetOpen C
metequiv.4 K = MetOpen D
Assertion metequiv C ∞Met X D ∞Met X J = K x X r + s + x ball D s x ball C r a + b + x ball C b x ball D a

Proof

Step Hyp Ref Expression
1 metequiv.3 J = MetOpen C
2 metequiv.4 K = MetOpen D
3 1 2 metss C ∞Met X D ∞Met X J K x X r + s + x ball D s x ball C r
4 2 1 metss D ∞Met X C ∞Met X K J x X a + b + x ball C b x ball D a
5 4 ancoms C ∞Met X D ∞Met X K J x X a + b + x ball C b x ball D a
6 3 5 anbi12d C ∞Met X D ∞Met X J K K J x X r + s + x ball D s x ball C r x X a + b + x ball C b x ball D a
7 eqss J = K J K K J
8 r19.26 x X r + s + x ball D s x ball C r a + b + x ball C b x ball D a x X r + s + x ball D s x ball C r x X a + b + x ball C b x ball D a
9 6 7 8 3bitr4g C ∞Met X D ∞Met X J = K x X r + s + x ball D s x ball C r a + b + x ball C b x ball D a