Metamath Proof Explorer


Theorem metreslem

Description: Lemma for metres . (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion metreslem domD=X×XDR×R=DXR×XR

Proof

Step Hyp Ref Expression
1 resdmres DdomDR×R=DR×R
2 ineq2 domD=X×XR×RdomD=R×RX×X
3 dmres domDR×R=R×RdomD
4 inxp X×XR×R=XR×XR
5 incom X×XR×R=R×RX×X
6 4 5 eqtr3i XR×XR=R×RX×X
7 2 3 6 3eqtr4g domD=X×XdomDR×R=XR×XR
8 7 reseq2d domD=X×XDdomDR×R=DXR×XR
9 1 8 eqtr3id domD=X×XDR×R=DXR×XR