Metamath Proof Explorer


Theorem mexval2

Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mexval.k K = mTC T
mexval.e E = mEx T
mexval2.c C = mCN T
mexval2.v V = mVR T
Assertion mexval2 E = K × Word C V

Proof

Step Hyp Ref Expression
1 mexval.k K = mTC T
2 mexval.e E = mEx T
3 mexval2.c C = mCN T
4 mexval2.v V = mVR T
5 eqid mREx T = mREx T
6 1 2 5 mexval E = K × mREx T
7 3 4 5 mrexval T V mREx T = Word C V
8 7 xpeq2d T V K × mREx T = K × Word C V
9 6 8 syl5eq T V E = K × Word C V
10 0xp × Word C V =
11 10 eqcomi = × Word C V
12 fvprc ¬ T V mEx T =
13 2 12 syl5eq ¬ T V E =
14 fvprc ¬ T V mTC T =
15 1 14 syl5eq ¬ T V K =
16 15 xpeq1d ¬ T V K × Word C V = × Word C V
17 11 13 16 3eqtr4a ¬ T V E = K × Word C V
18 9 17 pm2.61i E = K × Word C V