Metamath Proof Explorer


Theorem mgcmnt2d

Description: Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024)

Ref Expression
Hypotheses mgcmntd.1 H = V MGalConn W
mgcmntd.2 φ V Proset
mgcmntd.3 φ W Proset
mgcmntd.4 φ F H G
Assertion mgcmnt2d φ G W Monot V

Proof

Step Hyp Ref Expression
1 mgcmntd.1 H = V MGalConn W
2 mgcmntd.2 φ V Proset
3 mgcmntd.3 φ W Proset
4 mgcmntd.4 φ F H G
5 eqid Base V = Base V
6 eqid Base W = Base W
7 eqid V = V
8 eqid W = W
9 5 6 7 8 1 2 3 4 mgcf2 φ G : Base W Base V
10 5 6 7 8 1 2 3 dfmgc2 φ F H G F : Base V Base W G : Base W Base V x Base V y Base V x V y F x W F y u Base W v Base W u W v G u V G v u Base W F G u W u x Base V x V G F x
11 4 10 mpbid φ F : Base V Base W G : Base W Base V x Base V y Base V x V y F x W F y u Base W v Base W u W v G u V G v u Base W F G u W u x Base V x V G F x
12 11 simprld φ x Base V y Base V x V y F x W F y u Base W v Base W u W v G u V G v
13 12 simprd φ u Base W v Base W u W v G u V G v
14 6 5 8 7 ismnt W Proset V Proset G W Monot V G : Base W Base V u Base W v Base W u W v G u V G v
15 14 biimpar W Proset V Proset G : Base W Base V u Base W v Base W u W v G u V G v G W Monot V
16 3 2 9 13 15 syl22anc φ G W Monot V