Metamath Proof Explorer


Theorem mgm0

Description: Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion mgm0 MVBaseM=MMgm

Proof

Step Hyp Ref Expression
1 rzal BaseM=xBaseMyBaseMx+MyBaseM
2 1 adantl MVBaseM=xBaseMyBaseMx+MyBaseM
3 eqid BaseM=BaseM
4 eqid +M=+M
5 3 4 ismgm MVMMgmxBaseMyBaseMx+MyBaseM
6 5 adantr MVBaseM=MMgmxBaseMyBaseMx+MyBaseM
7 2 6 mpbird MVBaseM=MMgm