Metamath Proof Explorer


Theorem mgm2mgm

Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020)

Ref Expression
Assertion mgm2mgm MMgmALTMMgm

Proof

Step Hyp Ref Expression
1 eqid BaseM=BaseM
2 eqid +M=+M
3 1 2 ismgmALT MMgmALTMMgmALT+MclLawBaseM
4 fvex +MV
5 fvex BaseMV
6 iscllaw +MVBaseMV+MclLawBaseMxBaseMyBaseMx+MyBaseM
7 4 5 6 mp2an +MclLawBaseMxBaseMyBaseMx+MyBaseM
8 1 2 ismgm MMgmALTMMgmxBaseMyBaseMx+MyBaseM
9 8 biimprd MMgmALTxBaseMyBaseMx+MyBaseMMMgm
10 7 9 biimtrid MMgmALT+MclLawBaseMMMgm
11 3 10 sylbid MMgmALTMMgmALTMMgm
12 11 pm2.43i MMgmALTMMgm
13 mgmplusgiopALT MMgm+MclLawBaseM
14 1 2 ismgmALT MMgmMMgmALT+MclLawBaseM
15 13 14 mpbird MMgmMMgmALT
16 12 15 impbii MMgmALTMMgm