Metamath Proof Explorer


Theorem mgm2nsgrplem1

Description: Lemma 1 for mgm2nsgrp : M is a magma, even if A = B ( M is the trivial magma in this case, see mgmb1mgm1 ). (Contributed by AV, 27-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S = A B
mgm2nsgrp.b Base M = S
mgm2nsgrp.o + M = x S , y S if x = A y = A B A
Assertion mgm2nsgrplem1 A V B W M Mgm

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S = A B
2 mgm2nsgrp.b Base M = S
3 mgm2nsgrp.o + M = x S , y S if x = A y = A B A
4 prid1g A V A A B
5 4 1 eleqtrrdi A V A S
6 prid2g B W B A B
7 6 1 eleqtrrdi B W B S
8 2 eqcomi S = Base M
9 ne0i A S S
10 9 adantr A S B S S
11 simplr A S B S x S y S B S
12 simpll A S B S x S y S A S
13 8 3 10 11 12 opifismgm A S B S M Mgm
14 5 7 13 syl2an A V B W M Mgm