Metamath Proof Explorer


Theorem mgmhmf

Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses mgmhmf.b B=BaseS
mgmhmf.c C=BaseT
Assertion mgmhmf FSMgmHomTF:BC

Proof

Step Hyp Ref Expression
1 mgmhmf.b B=BaseS
2 mgmhmf.c C=BaseT
3 eqid +S=+S
4 eqid +T=+T
5 1 2 3 4 ismgmhm FSMgmHomTSMgmTMgmF:BCxByBFx+Sy=Fx+TFy
6 simprl SMgmTMgmF:BCxByBFx+Sy=Fx+TFyF:BC
7 5 6 sylbi FSMgmHomTF:BC