Metamath Proof Explorer


Theorem mgmidmo

Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014) (Revised by NM, 17-Jun-2017)

Ref Expression
Assertion mgmidmo *uBxBu+˙x=xx+˙u=x

Proof

Step Hyp Ref Expression
1 simpl u+˙x=xx+˙u=xu+˙x=x
2 1 ralimi xBu+˙x=xx+˙u=xxBu+˙x=x
3 simpr w+˙x=xx+˙w=xx+˙w=x
4 3 ralimi xBw+˙x=xx+˙w=xxBx+˙w=x
5 oveq1 x=ux+˙w=u+˙w
6 id x=ux=u
7 5 6 eqeq12d x=ux+˙w=xu+˙w=u
8 7 rspcva uBxBx+˙w=xu+˙w=u
9 oveq2 x=wu+˙x=u+˙w
10 id x=wx=w
11 9 10 eqeq12d x=wu+˙x=xu+˙w=w
12 11 rspcva wBxBu+˙x=xu+˙w=w
13 8 12 sylan9req uBxBx+˙w=xwBxBu+˙x=xu=w
14 13 an42s uBwBxBu+˙x=xxBx+˙w=xu=w
15 14 ex uBwBxBu+˙x=xxBx+˙w=xu=w
16 2 4 15 syl2ani uBwBxBu+˙x=xx+˙u=xxBw+˙x=xx+˙w=xu=w
17 16 rgen2 uBwBxBu+˙x=xx+˙u=xxBw+˙x=xx+˙w=xu=w
18 oveq1 u=wu+˙x=w+˙x
19 18 eqeq1d u=wu+˙x=xw+˙x=x
20 19 ovanraleqv u=wxBu+˙x=xx+˙u=xxBw+˙x=xx+˙w=x
21 20 rmo4 *uBxBu+˙x=xx+˙u=xuBwBxBu+˙x=xx+˙u=xxBw+˙x=xx+˙w=xu=w
22 17 21 mpbir *uBxBu+˙x=xx+˙u=x