Metamath Proof Explorer


Theorem mgmidmo

Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014) (Revised by NM, 17-Jun-2017)

Ref Expression
Assertion mgmidmo * u B x B u + ˙ x = x x + ˙ u = x

Proof

Step Hyp Ref Expression
1 simpl u + ˙ x = x x + ˙ u = x u + ˙ x = x
2 1 ralimi x B u + ˙ x = x x + ˙ u = x x B u + ˙ x = x
3 simpr w + ˙ x = x x + ˙ w = x x + ˙ w = x
4 3 ralimi x B w + ˙ x = x x + ˙ w = x x B x + ˙ w = x
5 oveq1 x = u x + ˙ w = u + ˙ w
6 id x = u x = u
7 5 6 eqeq12d x = u x + ˙ w = x u + ˙ w = u
8 7 rspcva u B x B x + ˙ w = x u + ˙ w = u
9 oveq2 x = w u + ˙ x = u + ˙ w
10 id x = w x = w
11 9 10 eqeq12d x = w u + ˙ x = x u + ˙ w = w
12 11 rspcva w B x B u + ˙ x = x u + ˙ w = w
13 8 12 sylan9req u B x B x + ˙ w = x w B x B u + ˙ x = x u = w
14 13 an42s u B w B x B u + ˙ x = x x B x + ˙ w = x u = w
15 14 ex u B w B x B u + ˙ x = x x B x + ˙ w = x u = w
16 2 4 15 syl2ani u B w B x B u + ˙ x = x x + ˙ u = x x B w + ˙ x = x x + ˙ w = x u = w
17 16 rgen2 u B w B x B u + ˙ x = x x + ˙ u = x x B w + ˙ x = x x + ˙ w = x u = w
18 oveq1 u = w u + ˙ x = w + ˙ x
19 18 eqeq1d u = w u + ˙ x = x w + ˙ x = x
20 19 ovanraleqv u = w x B u + ˙ x = x x + ˙ u = x x B w + ˙ x = x x + ˙ w = x
21 20 rmo4 * u B x B u + ˙ x = x x + ˙ u = x u B w B x B u + ˙ x = x x + ˙ u = x x B w + ˙ x = x x + ˙ w = x u = w
22 17 21 mpbir * u B x B u + ˙ x = x x + ˙ u = x