Description: If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mirval.p | |
|
mirval.d | |
||
mirval.i | |
||
mirval.l | |
||
mirval.s | |
||
mirval.g | |
||
mirln2.m | |
||
mirln2.d | |
||
mirln2.a | |
||
mirln2.1 | |
||
mirln2.2 | |
||
Assertion | mirln2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | |
|
2 | mirval.d | |
|
3 | mirval.i | |
|
4 | mirval.l | |
|
5 | mirval.s | |
|
6 | mirval.g | |
|
7 | mirln2.m | |
|
8 | mirln2.d | |
|
9 | mirln2.a | |
|
10 | mirln2.1 | |
|
11 | mirln2.2 | |
|
12 | 1 4 3 6 8 10 | tglnpt | |
13 | 1 2 3 4 5 6 9 7 12 | mirinv | |
14 | 13 | biimpa | |
15 | 10 | adantr | |
16 | 14 15 | eqeltrd | |
17 | 6 | adantr | |
18 | 1 4 3 6 8 11 | tglnpt | |
19 | 18 | adantr | |
20 | 12 | adantr | |
21 | 9 | adantr | |
22 | simpr | |
|
23 | 1 2 3 4 5 17 21 7 20 | mirbtwn | |
24 | 1 3 4 17 19 20 21 22 23 | btwnlng1 | |
25 | 8 | adantr | |
26 | 11 | adantr | |
27 | 10 | adantr | |
28 | 1 3 4 17 19 20 22 22 25 26 27 | tglinethru | |
29 | 24 28 | eleqtrrd | |
30 | 16 29 | pm2.61dane | |