Metamath Proof Explorer


Theorem mirln2

Description: If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirln2.m M=SA
mirln2.d φDranL
mirln2.a φAP
mirln2.1 φBD
mirln2.2 φMBD
Assertion mirln2 φAD

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirln2.m M=SA
8 mirln2.d φDranL
9 mirln2.a φAP
10 mirln2.1 φBD
11 mirln2.2 φMBD
12 1 4 3 6 8 10 tglnpt φBP
13 1 2 3 4 5 6 9 7 12 mirinv φMB=BA=B
14 13 biimpa φMB=BA=B
15 10 adantr φMB=BBD
16 14 15 eqeltrd φMB=BAD
17 6 adantr φMBBG𝒢Tarski
18 1 4 3 6 8 11 tglnpt φMBP
19 18 adantr φMBBMBP
20 12 adantr φMBBBP
21 9 adantr φMBBAP
22 simpr φMBBMBB
23 1 2 3 4 5 17 21 7 20 mirbtwn φMBBAMBIB
24 1 3 4 17 19 20 21 22 23 btwnlng1 φMBBAMBLB
25 8 adantr φMBBDranL
26 11 adantr φMBBMBD
27 10 adantr φMBBBD
28 1 3 4 17 19 20 22 22 25 26 27 tglinethru φMBBD=MBLB
29 24 28 eleqtrrd φMBBAD
30 16 29 pm2.61dane φAD