Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Additional material on polynomials [DEPRECATED]
mncply
Next ⟩
mnccoe
Metamath Proof Explorer
Ascii
Unicode
Theorem
mncply
Description:
A monic polynomial is a polynomial.
(Contributed by
Stefan O'Rear
, 5-Dec-2014)
Ref
Expression
Assertion
mncply
⊢
P
∈
Monic
⁡
S
→
P
∈
Poly
⁡
S
Proof
Step
Hyp
Ref
Expression
1
elmnc
⊢
P
∈
Monic
⁡
S
↔
P
∈
Poly
⁡
S
∧
coeff
⁡
P
⁡
deg
⁡
P
=
1
2
1
simplbi
⊢
P
∈
Monic
⁡
S
→
P
∈
Poly
⁡
S