Metamath Proof Explorer


Theorem mndtcbas2

Description: Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φMMnd
mndtcbas.b φB=BaseC
mndtchom.x φXB
mndtchom.y φYB
Assertion mndtcbas2 φX=Y

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φMMnd
3 mndtcbas.b φB=BaseC
4 mndtchom.x φXB
5 mndtchom.y φYB
6 1 2 3 mndtcbas φ∃!xxB
7 eumo ∃!xxB*xxB
8 moel *xxBxByBx=y
9 8 biimpi *xxBxByBx=y
10 6 7 9 3syl φxByBx=y
11 eqeq12 x=Xy=Yx=yX=Y
12 11 rspc2gv XBYBxByBx=yX=Y
13 4 5 12 syl2anc φxByBx=yX=Y
14 10 13 mpd φX=Y