Metamath Proof Explorer


Theorem mndtchom

Description: The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φMMnd
mndtcbas.b φB=BaseC
mndtchom.x φXB
mndtchom.y φYB
mndtchom.h φH=HomC
Assertion mndtchom φXHY=BaseM

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φMMnd
3 mndtcbas.b φB=BaseC
4 mndtchom.x φXB
5 mndtchom.y φYB
6 mndtchom.h φH=HomC
7 1 2 mndtcval φC=BasendxMHomndxMMBaseMcompndxMMM+M
8 catstr BasendxMHomndxMMBaseMcompndxMMM+MStruct115
9 homid Hom=SlotHomndx
10 snsstp2 HomndxMMBaseMBasendxMHomndxMMBaseMcompndxMMM+M
11 snex MMBaseMV
12 11 a1i φMMBaseMV
13 eqid HomC=HomC
14 7 8 9 10 12 13 strfv3 φHomC=MMBaseM
15 6 14 eqtrd φH=MMBaseM
16 1 2 3 4 mndtcob φX=M
17 1 2 3 5 mndtcob φY=M
18 15 16 17 oveq123d φXHY=MMMBaseMM
19 df-ot MMBaseM=MMBaseM
20 19 sneqi MMBaseM=MMBaseM
21 20 oveqi MMMBaseMM=MMMBaseMM
22 df-ov MMMBaseMM=MMBaseMMM
23 opex MMV
24 fvex BaseMV
25 23 24 fvsn MMBaseMMM=BaseM
26 21 22 25 3eqtri MMMBaseMM=BaseM
27 18 26 eqtrdi φXHY=BaseM