Metamath Proof Explorer


Theorem mnring0gd

Description: The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnring0gd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnring0gd.2 A=BaseM
mnring0gd.3 V=RfreeLModA
mnring0gd.4 φRU
mnring0gd.5 φMW
Assertion mnring0gd φ0V=0F

Proof

Step Hyp Ref Expression
1 mnring0gd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnring0gd.2 A=BaseM
3 mnring0gd.3 V=RfreeLModA
4 mnring0gd.4 φRU
5 mnring0gd.5 φMW
6 eqidd φBaseV=BaseV
7 eqid BaseV=BaseV
8 1 2 3 7 4 5 mnringbased φBaseV=BaseF
9 1 2 3 4 5 mnringaddgd φ+V=+F
10 9 oveqdr φxBaseVyBaseVx+Vy=x+Fy
11 6 8 10 grpidpropd φ0V=0F