Metamath Proof Explorer


Theorem mnringvscad

Description: The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringvscad.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringvscad.2 B=BaseM
mnringvscad.3 V=RfreeLModB
mnringvscad.4 φRU
mnringvscad.5 φMW
Assertion mnringvscad φV=F

Proof

Step Hyp Ref Expression
1 mnringvscad.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringvscad.2 B=BaseM
3 mnringvscad.3 V=RfreeLModB
4 mnringvscad.4 φRU
5 mnringvscad.5 φMW
6 vscaid 𝑠=Slotndx
7 vscandxnmulrndx ndxndx
8 1 6 7 2 3 4 5 mnringnmulrd φV=F