Metamath Proof Explorer
		
		
		
		Description:  The scalar product of a monoid ring.  (Contributed by Rohan Ridenour, 14-May-2024)  (Proof shortened by AV, 1-Nov-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mnringvscad.1 |  | 
					
						|  |  | mnringvscad.2 |  | 
					
						|  |  | mnringvscad.3 |  | 
					
						|  |  | mnringvscad.4 |  | 
					
						|  |  | mnringvscad.5 |  | 
				
					|  | Assertion | mnringvscad |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnringvscad.1 |  | 
						
							| 2 |  | mnringvscad.2 |  | 
						
							| 3 |  | mnringvscad.3 |  | 
						
							| 4 |  | mnringvscad.4 |  | 
						
							| 5 |  | mnringvscad.5 |  | 
						
							| 6 |  | vscaid |  | 
						
							| 7 |  | vscandxnmulrndx |  | 
						
							| 8 | 1 6 7 2 3 4 5 | mnringnmulrd |  |