Metamath Proof Explorer


Theorem mnuprss2d

Description: Special case of mnuprssd . (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuprss2d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnuprss2d.2 φUM
mnuprss2d.3 φCU
mnuprss2d.4 AC
mnuprss2d.5 BC
Assertion mnuprss2d φABU

Proof

Step Hyp Ref Expression
1 mnuprss2d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnuprss2d.2 φUM
3 mnuprss2d.3 φCU
4 mnuprss2d.4 AC
5 mnuprss2d.5 BC
6 4 a1i φAC
7 5 a1i φBC
8 1 2 3 6 7 mnuprssd φABU