Metamath Proof Explorer


Theorem mnupwd

Description: Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnupwd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnupwd.2 φUM
mnupwd.3 φAU
Assertion mnupwd φ𝒫AU

Proof

Step Hyp Ref Expression
1 mnupwd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnupwd.2 φUM
3 mnupwd.3 φAU
4 0ex V
5 4 a1i φV
6 1 2 3 5 mnuop23d φwU𝒫AwiAvUivvuiuuw
7 simpl 𝒫AwiAvUivvuiuuw𝒫Aw
8 7 reximi wU𝒫AwiAvUivvuiuuwwU𝒫Aw
9 6 8 syl φwU𝒫Aw
10 1 2 9 mnuss2d φ𝒫AU