Metamath Proof Explorer


Theorem mnusnd

Description: Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnusnd.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnusnd.2 φ U M
mnusnd.3 φ A U
Assertion mnusnd φ A U

Proof

Step Hyp Ref Expression
1 mnusnd.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnusnd.2 φ U M
3 mnusnd.3 φ A U
4 1 2 3 mnupwd φ 𝒫 A U
5 snsspw A 𝒫 A
6 5 a1i φ A 𝒫 A
7 1 2 4 6 mnussd φ A U