Metamath Proof Explorer


Theorem mnusnd

Description: Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnusnd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnusnd.2 φUM
mnusnd.3 φAU
Assertion mnusnd φAU

Proof

Step Hyp Ref Expression
1 mnusnd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnusnd.2 φUM
3 mnusnd.3 φAU
4 1 2 3 mnupwd φ𝒫AU
5 snsspw A𝒫A
6 5 a1i φA𝒫A
7 1 2 4 6 mnussd φAU