Description: The modular inverse of A mod P is unique. (Contributed by Alexander van der Vekens, 17-May-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | modprminv.1 | |
|
Assertion | modprminveq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modprminv.1 | |
|
2 | elfzelz | |
|
3 | zmulcl | |
|
4 | 2 3 | sylan2 | |
5 | modprm1div | |
|
6 | 4 5 | sylan2 | |
7 | 6 | expr | |
8 | 7 | 3adant3 | |
9 | 8 | pm5.32d | |
10 | 1 | prmdiveq | |
11 | 9 10 | bitrd | |