Metamath Proof Explorer


Theorem mof0

Description: There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mof0 *ff:A

Proof

Step Hyp Ref Expression
1 0ex V
2 eqeq2 g=f=gf=
3 2 imbi2d g=f:Af=gf:Af=
4 3 albidv g=ff:Af=gff:Af=
5 1 4 spcev ff:Af=gff:Af=g
6 f00 f:Af=A=
7 6 simplbi f:Af=
8 5 7 mpg gff:Af=g
9 df-mo *ff:Agff:Af=g
10 8 9 mpbir *ff:A