Description: Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismon.b | |
|
ismon.h | |
||
ismon.o | |
||
ismon.s | |
||
ismon.c | |
||
ismon.x | |
||
ismon.y | |
||
moni.z | |
||
moni.f | |
||
moni.g | |
||
moni.k | |
||
Assertion | moni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismon.b | |
|
2 | ismon.h | |
|
3 | ismon.o | |
|
4 | ismon.s | |
|
5 | ismon.c | |
|
6 | ismon.x | |
|
7 | ismon.y | |
|
8 | moni.z | |
|
9 | moni.f | |
|
10 | moni.g | |
|
11 | moni.k | |
|
12 | 1 2 3 4 5 6 7 | ismon2 | |
13 | 9 12 | mpbid | |
14 | 13 | simprd | |
15 | 10 | adantr | |
16 | simpr | |
|
17 | 16 | oveq1d | |
18 | 15 17 | eleqtrrd | |
19 | 11 | adantr | |
20 | 19 17 | eleqtrrd | |
21 | 20 | adantr | |
22 | simpllr | |
|
23 | 22 | opeq1d | |
24 | 23 | oveq1d | |
25 | eqidd | |
|
26 | simplr | |
|
27 | 24 25 26 | oveq123d | |
28 | simpr | |
|
29 | 24 25 28 | oveq123d | |
30 | 27 29 | eqeq12d | |
31 | 26 28 | eqeq12d | |
32 | 30 31 | imbi12d | |
33 | 21 32 | rspcdv | |
34 | 18 33 | rspcimdv | |
35 | 8 34 | rspcimdv | |
36 | 14 35 | mpd | |
37 | oveq2 | |
|
38 | 36 37 | impbid1 | |