Metamath Proof Explorer


Theorem mopni

Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 J=MetOpenD
Assertion mopni D∞MetXAJPAxranballDPxxA

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 1 elmopn D∞MetXAJAXyAxranballDyxxA
3 2 simplbda D∞MetXAJyAxranballDyxxA
4 eleq1 y=PyxPx
5 4 anbi1d y=PyxxAPxxA
6 5 rexbidv y=PxranballDyxxAxranballDPxxA
7 6 rspccv yAxranballDyxxAPAxranballDPxxA
8 3 7 syl D∞MetXAJPAxranballDPxxA
9 8 3impia D∞MetXAJPAxranballDPxxA