Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Degree and minimal polynomial of algebraic numbers
mpaamn
Next ⟩
Algebraic integers I
Metamath Proof Explorer
Ascii
Unicode
Theorem
mpaamn
Description:
Minimal polynomial is monic.
(Contributed by
Stefan O'Rear
, 25-Nov-2014)
Ref
Expression
Assertion
mpaamn
⊢
A
∈
𝔸
→
coeff
minPoly
𝔸
A
deg
𝔸
A
=
1
Proof
Step
Hyp
Ref
Expression
1
mpaalem
⊢
A
∈
𝔸
→
minPoly
𝔸
A
∈
Poly
ℚ
∧
deg
minPoly
𝔸
A
=
deg
𝔸
A
∧
minPoly
𝔸
A
A
=
0
∧
coeff
minPoly
𝔸
A
deg
𝔸
A
=
1
2
simpr3
⊢
minPoly
𝔸
A
∈
Poly
ℚ
∧
deg
minPoly
𝔸
A
=
deg
𝔸
A
∧
minPoly
𝔸
A
A
=
0
∧
coeff
minPoly
𝔸
A
deg
𝔸
A
=
1
→
coeff
minPoly
𝔸
A
deg
𝔸
A
=
1
3
1
2
syl
⊢
A
∈
𝔸
→
coeff
minPoly
𝔸
A
deg
𝔸
A
=
1