Metamath Proof Explorer


Theorem mpet3

Description: Member Partition-Equivalence Theorem. Together with mpet mpet2 , mostly in its conventional cpet and cpet2 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 with general R ). (Contributed by Peter Mazsa, 4-May-2018) (Revised by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion mpet3 ElDisjA¬ACoElEqvRelAA/A=A

Proof

Step Hyp Ref Expression
1 eldisjn0elb ElDisjA¬ADisjE-1AdomE-1A/E-1A=A
2 eqvrelqseqdisj3 EqvRelE-1AdomE-1A/E-1A=ADisjE-1A
3 2 petlem DisjE-1AdomE-1A/E-1A=AEqvRelE-1AdomE-1A/E-1A=A
4 eqvreldmqs EqvRelE-1AdomE-1A/E-1A=ACoElEqvRelAA/A=A
5 1 3 4 3bitri ElDisjA¬ACoElEqvRelAA/A=A