Metamath Proof Explorer


Theorem mpocnfldadd

Description: The addition operation of the field of complex numbers. Version of cnfldadd using maps-to notation. (Contributed by GG, 31-Mar-2025)

Ref Expression
Assertion mpocnfldadd x,yx+y=+fld

Proof

Step Hyp Ref Expression
1 mpoaddex x,yx+yV
2 cnfldstr fldStruct113
3 plusgid +𝑔=Slot+ndx
4 snsstp2 +ndxx,yx+yBasendx+ndxx,yx+yndxx,yxy
5 ssun1 Basendx+ndxx,yx+yndxx,yxyBasendx+ndxx,yx+yndxx,yxy*ndx*
6 ssun1 Basendx+ndxx,yx+yndxx,yxy*ndx*Basendx+ndxx,yx+yndxx,yxy*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
7 gg-dfcnfld fld=Basendx+ndxx,yx+yndxx,yxy*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
8 6 7 sseqtrri Basendx+ndxx,yx+yndxx,yxy*ndx*fld
9 5 8 sstri Basendx+ndxx,yx+yndxx,yxyfld
10 4 9 sstri +ndxx,yx+yfld
11 2 3 10 strfv x,yx+yVx,yx+y=+fld
12 1 11 ax-mp x,yx+y=+fld