Metamath Proof Explorer


Theorem mpoexw

Description: Weak version of mpoex that holds without ax-rep . If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023)

Ref Expression
Hypotheses mpoexw.1 AV
mpoexw.2 BV
mpoexw.3 DV
mpoexw.4 xAyBCD
Assertion mpoexw xA,yBCV

Proof

Step Hyp Ref Expression
1 mpoexw.1 AV
2 mpoexw.2 BV
3 mpoexw.3 DV
4 mpoexw.4 xAyBCD
5 eqid xA,yBC=xA,yBC
6 5 mpofun FunxA,yBC
7 5 dmmpoga xAyBCDdomxA,yBC=A×B
8 4 7 ax-mp domxA,yBC=A×B
9 1 2 xpex A×BV
10 8 9 eqeltri domxA,yBCV
11 5 rnmpo ranxA,yBC=z|xAyBz=C
12 4 rspec xAyBCD
13 12 r19.21bi xAyBCD
14 eleq1a CDz=CzD
15 13 14 syl xAyBz=CzD
16 15 rexlimdva xAyBz=CzD
17 16 rexlimiv xAyBz=CzD
18 17 abssi z|xAyBz=CD
19 3 18 ssexi z|xAyBz=CV
20 11 19 eqeltri ranxA,yBCV
21 funexw FunxA,yBCdomxA,yBCVranxA,yBCVxA,yBCV
22 6 10 20 21 mp3an xA,yBCV