Metamath Proof Explorer


Theorem mpoexxg2

Description: Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypothesis mpoexxg2.1 F=xA,yBC
Assertion mpoexxg2 BRyBASFV

Proof

Step Hyp Ref Expression
1 mpoexxg2.1 F=xA,yBC
2 1 mpofun FunF
3 1 dmmpossx2 domFyBA×y
4 vsnex yV
5 xpexg ASyVA×yV
6 4 5 mpan2 ASA×yV
7 6 ralimi yBASyBA×yV
8 iunexg BRyBA×yVyBA×yV
9 7 8 sylan2 BRyBASyBA×yV
10 ssexg domFyBA×yyBA×yVdomFV
11 3 9 10 sylancr BRyBASdomFV
12 funex FunFdomFVFV
13 2 11 12 sylancr BRyBASFV