Metamath Proof Explorer


Theorem mpomptxf

Description: Express a two-argument function as a one-argument function, or vice-versa. In this version B ( x ) is not assumed to be constant w.r.t x . (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by Thierry Arnoux, 31-Mar-2018)

Ref Expression
Hypotheses mpomptxf.0 _ x C
mpomptxf.1 _ y C
mpomptxf.2 z = x y C = D
Assertion mpomptxf z x A x × B C = x A , y B D

Proof

Step Hyp Ref Expression
1 mpomptxf.0 _ x C
2 mpomptxf.1 _ y C
3 mpomptxf.2 z = x y C = D
4 df-mpt z x A x × B C = z w | z x A x × B w = C
5 df-mpo x A , y B D = x y w | x A y B w = D
6 eliunxp z x A x × B x y z = x y x A y B
7 6 anbi1i z x A x × B w = C x y z = x y x A y B w = C
8 2 nfeq2 y w = C
9 8 19.41 y z = x y x A y B w = C y z = x y x A y B w = C
10 9 exbii x y z = x y x A y B w = C x y z = x y x A y B w = C
11 1 nfeq2 x w = C
12 11 19.41 x y z = x y x A y B w = C x y z = x y x A y B w = C
13 10 12 bitri x y z = x y x A y B w = C x y z = x y x A y B w = C
14 anass z = x y x A y B w = C z = x y x A y B w = C
15 3 eqeq2d z = x y w = C w = D
16 15 anbi2d z = x y x A y B w = C x A y B w = D
17 16 pm5.32i z = x y x A y B w = C z = x y x A y B w = D
18 14 17 bitri z = x y x A y B w = C z = x y x A y B w = D
19 18 2exbii x y z = x y x A y B w = C x y z = x y x A y B w = D
20 7 13 19 3bitr2i z x A x × B w = C x y z = x y x A y B w = D
21 20 opabbii z w | z x A x × B w = C = z w | x y z = x y x A y B w = D
22 dfoprab2 x y w | x A y B w = D = z w | x y z = x y x A y B w = D
23 21 22 eqtr4i z w | z x A x × B w = C = x y w | x A y B w = D
24 5 23 eqtr4i x A , y B D = z w | z x A x × B w = C
25 4 24 eqtr4i z x A x × B C = x A , y B D